
Titanium Description
Kristóf Szabados, Ádám Knapp

Version 11.0.0, 2024-11-14

Table of Contents
1. Introduction. 2

1.1. How to read this document . 2

1.2. Overview of Titanium . 2

1.3. General workflow. 2

1.4. The TITAN implementation of TTCN–3 . 3

1.5. Intended audience . 3

1.6. Presumed knowledge. 3

1.7. Typographical conventions . 3

1.8. Installation . 4

1.9. How to report an error for the tool . 4

2. Getting started. 5

2.1. The perspective . 5

2.2. Setting workbench preferences . 5

2.3. TITAN preferences . 5

3. Titanium preferences . 7

3.1. Code smell preferences . 7

3.1.1. Potential structural problems . 8

3.1.2. Code style problems . 9

3.1.3. Potential performance problems . 9

3.1.4. Potential Programming problems. 9

3.1.5. Unnecessary code . 11

3.1.6. Repair times of code smells . 11

3.2. Organize import preferences. 12

3.3. Metrics preferences . 13

3.4. Metric limits preferences . 13

3.4.1. Project metrics. 14

3.4.2. Module metrics . 15

3.4.3. Function metrics . 15

3.4.4. Testcase metrics . 16

3.4.5. Altstep metrics . 16

3.5. Metrics view preferences . 17

3.6. Project risk factor preference page . 17

3.7. Graph preferences . 18

3.7.1. General graph preferences . 18

3.7.2. Metrics preferences of module graph . 20

3.7.3. Cluster preferences of module graph. 20

4. Headless mode . 26

4.1. Important settings . 26

4.2. The general structure of invocation. 26

4.2.1. Pitfalls . 27

4.3. Clearing all projects from the workspace. 27

4.4. Importing projects from .prj . 27

4.5. Importing projects from the .tpd . 27

4.6. Exporting the detected code smells into Excel files . 28

4.6.1. Exporting the detected code smells of a single project into an Excel file 28

4.7. Exporting the detected code smells into CSV files . 29

4.8. Exporting the measured Metrics data into Excel files . 29

4.9. Exporting the module dependency graph . 30

4.10. Exporting the component dependency graph. 31

4.11. Exporting data for the Titanium SonarQube plugin . 31

5. Actions . 33

5.1. Editor actions. 33

5.2. Project actions . 33

5.3. File actions . 34

6. Configuring the Problems view . 35

6.1. Configuring by hand . 35

6.2. Importing a configuration predefined for Titanium . 36

7. Organize imports . 38

8. Metrics View . 39

8.1. Risk highlighting . 40

8.2. Jumping to code . 40

9. Top Riskiest Modules View. 42

9.1. Usage . 42

9.2. Colouring . 42

9.3. Jumping to code . 42

10. The module dependency graph . 44

10.1. Introduction to the dependency graph . 44

10.2. Usage of the module graph . 44

10.2.1. Drawing a graph . 45

10.2.2. Interactive events of the graph . 46

10.2.3. Module information window. 47

10.2.4. Menu functions . 48

11. The component dependency graph . 55

11.1. Functionality . 55

11.2. Interactive actions . 55

11.2.1. General actions . 55

11.2.2. Graph node actions . 55

11.2.3. Menu actions . 55

12. Titanium Sonar plugin . 57

12.1. Setting up the SonarQube server . 57

12.2. Exporting the data from Eclipse . 57

12.2.1. On the workbench . 57

12.2.2. In headless mode . 59

12.3. Load the data on the server . 59

12.4. Browse the result . 59

13. References . 60

14. Glossary . 61

Abstract

This document describes Titanium, the Quality Analyzer for TTCN-3 testing software.

Copyright

Copyright (c) 2000-2024 Ericsson Telecom AB.
All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson shall have no liability for any error or damage of
any kind resulting from the use of this document.

1

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. Introduction

1.1. How to read this document
This description contains detailed information on using the Titanium tool.

This documentation should be read together with the detailed mathematical explanations and lists
found on the projects Sharepoint site.

1.2. Overview of Titanium
The Titanium tool is an Eclipse plug-in, built upon the TITAN Designer for the Eclipse IDE Toolset.
As it extends the TITAN Designer plug-in, the Designer is required to be installed and be present for
the correct operation.

Titanium extends the already existing feature of the Designer with higher level code analysis
features such as:

• Detecting and reporting code smells[1] in TTCN-3 and ASN.1 source codes;

• Measuring and displaying code quality metrics on TTCN-3 source codes;

• Extracting and displaying an architectural overview of the projects;

1.3. General workflow
The workflow of the Titanium tool is extending the Designer’s workflow with additional checks and
measurement. As such the integration should be seamless.

The differences only involve the new features provided:

• In order to use the code smell reporting most efficiently, the user can configure which code
smells he wishes to be detected and reported.

• The metrics view and the architectural display simply needs to be invoked on a project, to
refresh their measurements and contents.

There are three more notes important to know when working with the tool:

• The tool does not need to be used in interactive mode. It is perfectly valid to check the quality of
the source periodically, extracting the issues to be solved into tasks for the team working with
the source code. As such it can be used as part of the review process, or the nightly check
system.

• It is advised to work in an iterative manner. When a code smell is corrected in some way, it can
happen that this might trigger the detection of new code smells. For example when unnecessary
import statements are removed from the system, it might turn out that some of the modules
were not used in the system at all.

• When working with code smells, metrics and architectural level tools it is important to
concentrate on the "larger picture". Correcting these issues on "face value" might hide away

2

https://ericsson.sharepoint.com/sites/DUCI_SW_Technology/Titanium/Wikis/Forms/AllPages.aspx

bigger problems. For example we found a case where unused variables with the same name
were reported several times in a module. This turned out to indicate, that the function they
were contained in were copy pasted, without review.

1.4. The TITAN implementation of TTCN–3
The Titanium plug-in is extending the TITAN Designer plug-in, which is an implementation of
TTCN–3 Core Language standard ([3]), supporting of ASN.1 language ([4]).

The limitations present in the Designer plug-in also apply here: there are TTCN–3 language
constructs which are not yet supported in the current version, while there are also some non-
standard extensions implemented by TITAN. Information on these limitations and extensions and
also some clarifications of how the standard has been implemented in TITAN, can be found in the
TITAN Programmer’s Technical Reference [2].

1.5. Intended audience
This document is intended for users of the TITAN TTCN–3 Test Toolset. In addition to this document,
readers analyzing their codes with this tool are advised to read our knowledge base listing the code
smells and metrics available.

1.6. Presumed knowledge
This document is intended to be read by users already familiar with the TITAN Designer toolset. For
this reason this document includes TITAN related information only when necessary.

The document also assumes that the reader has some level of mathematical and quality assurance
knowledge. For the most optimal usage of the architectural view an architectural mind-set and
point of view is also beneficial.

NOTE

This document does not wish to describe elements of Eclipse or Titan, and how to
use them. Every time such a feature is described, it is done with simplicity in mind,
assuming a minimal level of experience with Integrated Development
Environments from the user. However, it is advised to read the manuals of Eclipse
and Titan Designer (mainly contained in its included help system), because it can
provide better descriptions of the elements.

There are only a few points in this document where Eclipse related information is
separated from toolset related information. This is done so because the plug-in is so
deeply integrated into Eclipse that separating the functionalities cannot be done
without getting into implementation level of details (which the users are not
interested in, and would be probably very confusing for them).

1.7. Typographical conventions
This document uses the following typographical conventions:

3

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
"+" to represent key combinations. For example, Ctrl + Click

The slash (/) character is used to denote a menu and sub-menu sequence. For example, File / Open.

Monospaced font is used to represent system elements such as command and parameter names,
program and path names, URLs, directory names and code examples.

1.8. Installation
For details on installing the Titanium plug-in, see the Installation Guide for TITAN Designer and
TITAN Executor for the Eclipse IDE [1].

1.9. How to report an error for the tool
The following information should be included into trouble reports:

• a short description of the problem;

• what seems to have caused it, or how it can be reproduced;

• if the problem is graphical in some way (displaying something wrong), screenshots should also
be included;

• output appearing on the TITAN Console or the TITAN Debug Console;

• contents of the Error view if it contains some relevant information;

Before reporting a trouble, try to identify whether the trouble really relates to the Titanium plug-in.
It might be caused by other third party plug-ins, or by Eclipse itself.

Reporting the contents of the Consoles and the Error log is important as TITAN consoles might
display important debug information. The location on which the Error Log view can be opened can
change with Eclipse versions, but it is usually found at Window / Show View / Other… / PDE
Runtime / Error Log or Window / Show View / Other… / General / Error Log.

[1] Code smells are described in Wikipedia as: "In computer programming, code smell is any symptom in the source code of a
program that possibly indicates a deeper problem. Code smells are usually not bugs—they are not technically incorrect and don’t
currently prevent the program from functioning. Instead, they indicate weaknesses in design that may be slowing down
development or increasing the risk of bugs or failures in the future."

4

Chapter 2. Getting started
This section explains how to setup Eclipse and the TITAN Designer to access every feature provided
by Titanium.

2.1. The perspective
Titanium does not provide its own perspective, since most of its tools are meant to be extensions to
whatever perspective the user is already using.

For those who have not yet used the TITAN Designer before, it is recommended to read chapter
"The TITAN Editing perspective" of the TITAN Designer’s user guide on how to set up a default
perspective for working with TTCN-3.

2.2. Setting workbench preferences
This section gives an overview about the various settings related to the workbench provided by the
Titanium plug-in.

In Eclipse, workbench preferences are used to set user specific general rules, which apply to every
project; for example, preferred font styles, access to version handling systems and so on.

Workbench preferences are accessible selecting Window / Preferences. Clicking on the menu item
will bring up the preferences page. The opening window contains a preference tree on the left pane
to ease navigation – see Figure 1.

Figure 1. Titan preferences sub-tree

This section only concerns the preferences that are available under the TITAN preferences node of
this preference tree.

2.3. TITAN preferences

5

Figure 2. TITAN Preferences

For the correct operation of the Titanium plug-in it is necessary to set the license file preference of
TITAN. If this is not set the TITAN Designer plug-in will not do semantic analysis, which also stops
the Titanium plug-in as there will be no semantic data to work on.

Although not required it is recommend to set the maximum number of build processes to use
option to the number of processing units in the machine, to reach optimal speed.

NOTE

In case the license file is not provided, is not valid or has expired an additional link
will appear on this page. Clicking on this link a browser will open directing the user
to a web page where he can order a new license or can ask for a renewal of his
existing one.

6

Chapter 3. Titanium preferences
This section introduces the preference pages where one can control the behavior of the views and
other features provided by the Titanium plug-in.

3.1. Code smell preferences

Figure 3. Code smell preferences

Code smells are indicators of suspicious code that is not erroneous (i.e. the code compiles), but most
of the times they are not preferable. In this preference page, one can control the way of reporting
the available code smells.

The first item on this page is the option to enable on-the-fly processing. When this option is enabled
the code smells will be checked immediately after whenever the Designer’s on-the-fly analyzer
executes. When this option is disabled the code smells have to be explicitly requested by the Check
code for code smells action on the menu bar.

The reporting level of all code smells is configurable to be Ignore, Warning or Error. Code smells
set to be reported as Ignore will not be analysed and reported. Code smells configured to be
reported as Warning or Error will be reported with that severity level.

The code smells are categorized in 5 categories based on what kind of issue they are pointing at.

7

3.1.1. Potential structural problems

The code smells here might indicate some kind of architectural issue in the code.

• Report the usage of label and goto statements: go to statements and labels usually indicate
incorrect programing practices. Developers are encouraged to used elements of structured
programming practices.

• Report private component access from other module: report instances when a private
component variable is accessed from a function located in a different module, but running on
that component.

• Report operations which are not safe in blocking statements: reports the usage of
operations, that are not safe to be used in blocking statements.

• Report circular module dependencies: Report the case when module imports form a circle.
This situation slows down the parallel build, and might disable compilation in some cases.

NOTE
The algorithm will not report all circles, in a few cases where a small circle is
embedded in a larger one, both of them cannot be detected at the same time.

• Report modules with different language specifications: Report the case where the TTCN-3
modules of a project don’t all have the same language specification. This situation invites
confusion, misunderstandings and also indicates the need to updated some of the dated
modules.

NOTE TITAN does not support these language restrictions.

• Missing imported module: A definition could not be resolved using local and imported
definitions, but could be resolved by importing another module.

• Report unused module importation: The reported importations are not needed, as none of
their declaration is referred.

• Report friend declarations with missing modules: The module referred as a friend module is
missing.

• Report TTCN-3 definitions that could be private, but are not set so: Detect and report
definitions that are only used inside their own module, but are not declared private. This
situation allows for external modules to refer to these definitions, making them part of the
module’s public interface (which it might not have been intended to be a part of).

• Report visibility settings mentioned in the name of definitions: Detects the cases when
visibility names are mentioned in the name of the definition. If this meant to serve as a
protection mechanism against misuse it would be better to use the actual visibility attribute. In
that case the compiler would be able to automatically check the correctness of its usage.

• Report runs on scope reduction: Detect the cases when the component in the runs on clause of
a functions/altstep/testcase could be reduced.

• Report unusable connection: Detect connect statements where it is not possible to send or
receive any message, even though the connection is otherwise perfectly valid.

8

3.1.2. Code style problems

Code smells in this category indicate some issue in coding style.

• Report unnecessary negations in if statements: When the condition of an "if" statement is
negated, while it has exactly two branches.

• Report if the name of the module is mentioned in the name of the definition: In TTCN-3 it is
supported to refer definitions in a module name prefixed way. In cases the module reference
notation is not needed, this naming style only makes the name longer.

• Report if the name of the type is mentioned in the name of the definition: In repeating the
name of the type of a definition in the definitions name is a convenience method, but in some
cases this makes the name of definition very large without adding any information.

• Report magic constants: an integer higher than 5 or any string literal.

• Report if the attributes are being overridden: When attributes are being overridden.

3.1.3. Potential performance problems

Code smells in this category might indicate some codes with performance problems.

• Report infinite loops: When there is no way to escape the loop.

• Report uninitialized variable: variable defined without initial assignment. Usually these
variables are assigned a value later, but initializing at creation time is more efficient.

• Report size check in loop condition: The conditional part of loops is checked every iteration.
In case the loop is iterating on a fixed sized list, the checking of the size in every iteration only
wastes resources.

• Report consecutive assignments: Multiple consecutive assignment statements to the same
definition are not optimal. They should be merged into one statement. Lower limit can be set
for the number of consecutive assignments to be marked as a code smell. Default value is 4.

• Report proper usage of @lazy modifier: In parameters are not always optimal. If an in formal
parameter is only evaluated in some special cases declaring it lazy might provide a
performance improvement.

3.1.4. Potential Programming problems

Code smells in this category indicate issues related to bad or misunderstood architecture. Usually
these issues also indicate maintenance problems in the future.

• Report read only variables: a local variable, an out- or an in-out parameter of a function is
never written. These variables could be constants instead, or might have been designed to be
assigned a value.

• Report TTCN-3 definitions that have too many parameters: When a function has too many
parameters it becomes hard to invoke it. This might be a good indication that the function is
doing too much work on its own. Limit can be set, default is 7.

• Report TTCN-3 expressions that are too complex: When an expression is too complex it
becomes more likely that it is also incorrect. Limit can be set, default is 3.

9

• Report empty statement blocks: a statement block without any statement might indicate
missing functionality.

• Report statement blocks that have too many statements: When there are too many
statements in a block it might indicate, that it is doing too much work, and become too complex.
Limit can be set, default is 150.

• Report too big or too small shift and rotation sizes: When the argument is larger than the
length of the string or smaller than 1, the rotation might be incorrectly designed.

• Report conditional statements without else block: An "if" statement without else branch. In
tests this might indicate, that the incorrect parameters or values were not logged.

• Report switching on Boolean value: select statement on boolean argument.

• Report setverdict without reason: The setverdict statement is used without telling the reason
in a parameter.

• Report uncommented functions: procedures without documented headers.

• Report stop statement in functions: Functions whose body contains stop statement, which
will stop the test’s execution without releasing resources and driving the SUT in correct state.

• Report unused function return values: function return value is not used, or function is
started on component without being able to retrieve any return value.

• Report starting functions with out inout parameters: when starting a function with out or
inout parameters, the resulting values of those parameters will be lost.

• Report receive statements accepting any value: the alt branch has a receive statement that
accepts any value, but uses value redirection.

• Report insufficient altstep coverage: When an altstep or alt statement might receive a
message type without having a corresponding alt branch that could accept.

• Report alt branches that should use alt guards: When an alt branch starts with an if
statement, it should be considered whether an alt guard could be used instead of the conditional
statement.

• Report alt branches that should use receive template: When an alt branch redirects the
received message to a variable, and later it is used in a `match' operation.

• Report the usage of shorthand statements: The shorthand timeout, receive, trigger, getcall,
catch, check, getreply, done, killed statements should not be used inside a function, testcase, or
altstep without the `runs on' clause, except for when the shorthand statement is located inside
an alt statement, because an activated default can change their behavior.

• Report the usage of isBound without else branch: isbound, ispresent and ischosen are used to
check the existence of some states or objects. In test systems it is valuable to log some
information in the else branch about why it failed the test.

• Report the usage of non-enumeration types in select statements: Select statements should be
used with enumerations. Branch coverage cannot be calculated on select statements used with
other types.

• Report insufficient coverage of select statements: When a select statement is used with an
enumeration type and not all the enumeration items are covered with the case branches. If the
select statement has an else branch or a branch with an unfoldable value, the statement will not

10

be marked as a code smell.

• Report disordered cases of select statements: When a select statement is used with integer
type and the cases are not listed in increasing order. If the select statement has an else branch
or a branch with an un-foldable value, the statement will not be marked as a code smell.

• Report the usage of isvalue with a value as a parameter: isvalue check on a value always
returns true. Isbound should be used to check existence.

• Report possible iteration on wrong array: This code smell is marked, when an array that
differs from the array used in the final expression of a loop is indexed with the loop variable.

• Report reading out parameter before assigning a value to it: An out parameter of a function
might be uninitialized before its first assignment. Reading the parameter before that, can cause
problems.

• Report the usage of groups without any attributes: Group(s) created without any attributes.

3.1.5. Unnecessary code

Code smells in this category indicate pieces of the code, which is not used.

• Report unused module level definition: a definition is never referred.

• Report unused local definition: local definition is never referred.

• Report unnecessary controls: for example a branch of an if statement is unreachable, as the
condition is known at compile time.

• Report unnecessary "valueof" operation: value of is applied to a value itself, like
"valueof(42)".

3.1.6. Repair times of code smells

In this section you may set the repair time values of the signed problems. Normally these values are
set according to developers, who gave us estimated repair times.

Repair times are used upon exporting code smells to CSV format. The repair time tells how long it
takes to fix one problem of a certain type. You may set minimal, average and maximal repair times
for each problem. In these fields only floating point numbers are accepted.

11

Figure 4. Repair times of code smells

3.2. Organize import preferences

Figure 5. Organize import preferences

This page let you set the behaviour of import organization.

• Add the necessary module where missing reference is found: When checked, appropriate

12

module importations will be added to the file when organize action is called. In case of
ambiguous identifier, the user is asked interactively to decide.

• Remove unused imports: When checked, this action will remove those import statements,
which import a module whose definitions are not referenced in the importer module.

• Enable sorting: When checked, import statements will be placed in the beginning of the file,
sorted alphabetically.

• Method of change:

◦ Simple: Removed importations are deleted from the file; added importations are inserted
without any comment.

◦ Comment: Removed importations are commented out; added importations have a short
comment noting the definition that induced the module to import.

3.3. Metrics preferences

Figure 6. Metrics preferences

This page gives a short overview about the following subpages that are related to the metrics.

3.4. Metric limits preferences

13

Figure 7. Metric limits

This page provides the possibility of fine-tuning the metric highlight mechanism. Metrics generally
work as follows:

• A metric calculates a concrete value for the measured entity (for example, the Number of
functions metric counts the number of functions in a TTCN3 module.

• When set, classifies this value as NO, LOW or HIGH risk.

Some metrics have default pre-set limits, but here they can be customized. First, a method of
warning has to be selected:

• Never warn: the metric will never classify anything as "suspicious". In the Metrics View, in the
Top Riskiest Modules View and in the Module Graph View this metric will show everything in
green colour.

• Low risk: the metric will classify entities to be "a bit suspicious", if the measured value is above
a set limit. These entities will be shown in yellow colour.

• High risk: the metric will classify entities to be "really suspicious", if the measured value is
above a set limit. These entities will be shown in red colour.

• Tri-state: this metric will require two limits to be set. If the measured value is under the first
limit, then the entity is considered to bear no risk. If the value is above the second limit, then
the entity is considered to be "really suspicious". Finally, if the value is between the two limits,
then it is considered `a bit suspicious'.

After choosing the method, the values of the limits can be set.

Metrics are separated by the entities they measure.

3.4.1. Project metrics

These metrics collect information about the whole project.

14

• Number of TTCN3 modules: counts the number of TTCN3 modules in the project. Default:
Never warn.

• Number of ASN1 modules: counts the number of ASN1 modules in the project. Default: Never
warn.

3.4.2. Module metrics

These metrics collect information about each module of the project.

• Number of functions: counts the number of functions in a module. Default: Never warn.

• Number of testcases: counts the number of test cases in a module. Default: Never warn.

• Number of altsteps: counts the number of altsteps in a module. Default: Never warn.

• Internal feature envy: counts the number of references to entities inside the module. Default:
Never warn.

• External feature envy: counts the number of references to entities outside the module.
Default: Never warn.

• Fixme comments: counts the number of comments beginning with "FIXME". Default: Low risk
above 1.

• Imported: counts the times the module was imported by other modules. Default: Never warn.

• Imports: counts the number of module importations in the module. Default: Never warn.

• Efferent coupling: counts the number of referred assignments that are defined outside the
module. Default: Never warn.

• Afferent coupling: counts the number of assignments in the module that are referred by other
modules. Default: Never warn.

• Instability: Measures the efferent to (efferent plus afferent) coupling ratio. This metric can be
used to separate library-like modules (defining types, functions, altsteps used by other modules)
and high-level modules (defining test cases, high level behavior of the test). Low values of this
metric (near 0.0) indicate a high level module, while high values (near 1.0) indicate that the
module is used as a library. Both situations feature a well-structured module. However, when
the value of the metric is midway between the two edges (near 0.5); it is a sign of instable
module that might be worth separating to two modules. Default: classify to Low risk when the
value is between 0.3 and 0.7.

3.4.3. Function metrics

These metrics collect information about each function.

• Number of parameters: counts the number of formal parameters in the function definition.
Default: No risk under 5, Low risk between 5 and 7, High risk above 7 parameters.

• Lines of code: counts the lines of source code of the function. Default: No risk under 100, Low
risk between 100 and 150, High risk above 150 lines.

• Cyclomatic complexity: Cyclomatic (or McCabe) complexity of the function. Basically, it is the
number of control structures (loops, if branches, etc.) in the code. Default: No risk under 10,

15

Low risk between 10 and 20, High risk above 20.

• Nesting: counts the maximal number of nested blocks in the code. Default: No risk under 4,
Low risk between 4 and 6, High risk above 6 nested blocks.

• Return points: counts the number of exit points in the functions (i.e. the return statements, and
the end of functions). Default: Never warn.

• Default activations: counts the maximal number of default altstep branches that can be
activated during the function call. Default: Never warn.

• External feature envy: counts the number of references in the function body to entities inside
the module where the function resides. Default: Never warn.

• Internal feature envy: counts the number of references in the function body to entities outside
the module where the function resides. Default: Never warn.

3.4.4. Testcase metrics

These metrics collect information about each test case.

• Lines of code: counts the lines of source code of the test case. Default: No risk under 100, Low
risk between 100 and 150, High risk above 150 lines.

• Cyclomatic complexity: Cyclomatic (or McCabe) complexity of the test case. Basically, it is the
number of control structures (loops, if branches, etc.) in the code. Default: No risk under 10,
Low risk between 10 and 20, High risk above 20.

• Nesting: counts the maximal number of nested blocks in the code. Default: No risk under 4,
Low risk between 4 and 6, High risk above 6 nested blocks.

• Number of parameters: counts the number of formal parameters in the test case definition.
Default: No risk under 5, Low risk between 5 and 7, High risk above 7 parameters.

• External feature envy: counts the number of references in the test case body to entities inside
the module where the testcase resides. Default: Never warn.

• Internal feature envy: counts the number of references in the test case body to entities outside
the module where the testcase resides. Default: Never warn.

3.4.5. Altstep metrics

These metrics collect information about each altstep.

• Lines of code: counts the lines of source code of the altstep. Default: No risk under 100, Low
risk between 100 and 150, High risk above 150 lines.

• Cyclomatic complexity: Cyclomatic (or McCabe) complexity of the altstep. Basically, it is the
number of control structures (loops, if branches, etc.) in the code. Default: No risk under 10,
Low risk between 10 and 20, High risk above 20.

• Nesting: counts the maximal number of nested blocks in the code. Default: No risk under 4,
Low risk between 4 and 6, High risk above 6 nested blocks.

• Branches: counts the number of branches in the altstep definition. Default: Never warn.

• Number of parameters: counts the number of formal parameters in the altstep definition.

16

Default: No risk under 5, Low risk between 5 and 7, High risk above 7 parameters.

• External feature envy: counts the number of references in the altstep body to entities inside
the module where the altstep resides. Default: Never warn.

• Internal feature envy: counts the number of references in the altstep body to entities outside
the module where the altstep resides. Default: Never warn.

3.5. Metrics view preferences

Figure 8. Metrics view preferences

This page configures the contents of the Metrics View. Only the metrics checked will be displayed in
the view.

By default, all metrics are checked, therefore visible in the Metrics View.

3.6. Project risk factor preference page

17

Figure 9. Project risk factor preference page

The project action of exporting the code smells to an excel sheet (see here) classifies the project
quality according to a method described in [5]. The parameters of this algorithm can be fine-tuned
here.

3.7. Graph preferences

3.7.1. General graph preferences

At the Titanium Preferences/Graph page (see Figure 10) it is possible to set some parameters that
are related to all the graphs. Currently this page provides two settings, as you can see on the figure,
these are:

• Maximal number of iterations: This parameter sets the maximal number of iterations (cycles)
used to have a stable place for all nodes. If this limit is reached the nodes will not move
anymore, however the provided place for the nodes may not be the optimal according to the
used layout algorithm. A smaller value will allow the algorithms to finish much sooner, but the
drawback is that in those cases the structure might not be that much visible.

NOTE
This setting applies only to certain algorithms that have such a settable value. At
the moment this means Fruchterman-Reingold and Kamada-Kawai algorithms.

• Directed layout’s distance: The General Directed Graph and Reverse Directed Graph
algorithms do not only order the nodes by a hierarchical level, but they also try to find an
optimal vertical order for the nodes on a given level. But this ordering depends on how we
define the distance of two nodes (this is usually related to the incident edges). To use a certain
notion of distance you can choose here. The first option is Sum of distances this means that we
measure the Euclidean distance for all the related edges, and try to minimize the sum of these

18

distances. The second choice is Maximal distance. This means that we measure the Euclidean
distance for all related edges again, but the actual distance will be defined as the maximum of
these values. The ordering algorithms try to minimalize this distance value. So changing this
parameter may change the vertical ordering. In different cases different distance notion can be
useful. If you do not know which one to use you could try both, and decide later which one
looks better to you.

NOTE
The better algorithm may also depend on the actual structure of the drawn
graph.

For further information about graph layouts see the Chapter The module dependency graph.

Figure 10. Graph preference page

19

3.7.2. Metrics preferences of module graph

Figure 11. Module graph metrics preferences

This page is similar to the Metrics View preferences, but controls the set of metrics available in the
Module Graph View.

By default, all metrics are checked, therefore can be selected in the Module Graph View.

3.7.3. Cluster preferences of module graph

20

Figure 12. Module graph preferences

This page gives a short overview about the available clustering tools. The settings for these tools
can be found on the subpages.

See here for more details about how clustering the module graph works.

Preferences of the automatic clustering tool

21

Figure 13. Automatic clustering tool preferences

The setting for the automatic clustering tool can be found on this page.

The method works by improving the clustering of the other available clustering tools.

The clustering tools settings group contains the available tools whose clustering can be improved by
the automatic method. At least one should be chosen for the tool to function. If more than one is
selected, the best result will be displayed. All the tools are chosen by default.

The inner settings group contains information that the algorithm uses.

The maximum number of iterations is the number of maximum steps the algorithm takes to improve
a given clustering. If it is set too high, the algorithm can take a long time to finish.

The algorithm will not create more clusters than the setting for maximum number of clusters. This
value should be set to the number of components the project should have.

WARNING
The algorithm takes a long time on larger module graphs. However, progress
information is displayed during execution.

Clustering by module name preferences

22

Figure 14. Clustering by module name preferences

The setting for clustering by module name can be found on this page.

The method works by splitting the module names creating the clusters. A module will be assigned
to the narrowest cluster such that the module name begins with the cluster name. Thus the clusters
will form a hierarchy.

The split preferences contain settings about where the split in the module names will occur. More
than one option can be chosen.

If word boundaries is set, module names will be split around underscore (_) and hyphen (-)
characters. Default value is on.

If alternating case is set, module names will be split if an uppercase character follows a lowercase
character. Default value is off.

The number of times to split the names setting tells the algorithm how deep the hierarchy should be.

Clustering using regular expressions preferences

23

Figure 15. Clustering using regular expressions preference page

The method works by creating clusters for the given regular expressions and assigning the modules
to a given cluster if the module name matches the given regular expression.

This page can be used to create the regular expressions.

Figure 15 shows an example with two clusters. The first will contain modules, whose name begins
with the letter "m" or "M". The second will contain modules, whose name begins with the letter "a"
or "A".

By default, the list of clusters is empty.

NOTE
A module name should only match one regular expression from the list, otherwise
the clustering will fail. Module names not matching any of the regular expressions
will have a separate cluster.

Clustering using module location

24

Figure 16. Clustering using module location preference page

Preferences on this page apply to the Linked file location clusterer and Module location
clusterer tools. For details on the algorithms, see here.

On this page, you can set paths to directories whose name will be omitted from the beginning of the
cluster names created by the above mentioned clusterers.

Clicking the New or Edit buttons will bring up a dialog window, where you can select the directory.

25

Chapter 4. Headless mode
The Titanium plug-in offers several commands which can be called in headless mode. This way it
can be used from command line, and for example integrated into nightly build systems.

In headless mode eclipse plug-ins can offer entry point, called applications, through which the user
is able to invoke functionalities of the plug-in without starting the graphical interface of Eclipse. In
this mode everything is working exactly the same way as it is when invoked from the graphical
user interface, but there are no windows popping up, no user interaction.

NOTE
As in this mode there is no interaction between eclipse and the user, all of the
settings should be set beforehand. Otherwise the operation might not be able to
work properly, or produce un-expected result.

4.1. Important settings
There are two settings that are always important to be set correctly; otherwise the headless mode
will not be able to operate correctly:

1. The license file has to be set in the Designer and it has to be active, otherwise the on-the-fly
analyser will not be able to execute.

2. The "Display debug information" setting in the Designer has to be turned off. If that option is
turned on, the Designer will try to write debug information to the Titan Debug Console … which
does not exist in headless mode and the execution aborts.

3. The on-the-fly analysis of code smells must be enabled on the Code smells preference page (3.1),
otherwise only the Designer will check the code.

4.2. The general structure of invocation
A generic call to a headless entry point of eclipse follows this pattern:

eclipse.exe -noSplash -data <path to workspace to use> -application <entry point>
<parameters>

The items in this call have the following meaning:

• eclipse.exe: this is the binary executable of Eclipse to be used.

• "-noSplash": Eclipse should not display even the splash screen.

• "-data <path to workspace to use>": The data parameter tells eclipse which workspace to use. A
workspace is usually needed, to work with resources.

• "-application <entry point> <parameters>": The application parameter tells eclipse which entry
point to call, and what parameters to pass to that entry point.

An example call could be:

26

-noSplash -data c:Users\ekrisza\runtime_headless_workspace -application
org.eclipse.titanium.applications.ImportProjectsFromPrj
c:\cygwin\home\ekrisza\TitanSim\src\Applications\TitanSim_LPA108463\demo\TitanSim.prj

Titanium declares the following entry points.

4.2.1. Pitfalls

NOTE

On Linux eclipse should be invoked using the "eclipse" command (without file
extension). On Windows we recommend using "eclipse*c*.exe" not "eclipse.exe".
The plugins will work with both eclipse versions, but error messages are only
printed to the console when using "eclipse*c*.exe". "eclipse.exe" is not able to print
to the console it was started from.

4.3. Clearing all projects from the workspace
The "org.eclipse.titanium.applications.ClearAllProjects" entry point deletes all existing projects from
the provided workspace. This entry point can be used to initialize the contents of the workspace
back to a default state.

The entry point can be invoked as:

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.ClearAllProjects

This entry point does not take any parameters.

4.4. Importing projects from .prj
The "org.eclipse.titanium.applications.ImportProjectsFromPrj" entry point can be used to import
projects described in the mctr_gui’s .prj project descriptor into the provided workspace.

The entry point can be invoked as:

eclipse.exe -noSplash -data c:Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.ImportProjectsFromPrj
c:\cygwin\home\ekrisza\TitanSim\src\Applications\TitanSim_LPA108463\demo\TitanSim.prj

This entry point takes exactly one parameter: the location of the project descriptor file.

4.5. Importing projects from the .tpd
The "org.eclipse.titanium.applications.ImportProjectsFromTpd" entry point can be used to import
projects described in the Tpd project descriptor into the provided workspace.

27

The entry point can be invoked as:

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.ImportProjectsFromTpd
c:\cygwin\home\ekrisza\TitanSim\src\Applications\TitanSim_LPA108463\demo\TitanSim.tpd

This entry point takes exactly one parameter: the location of the project descriptor file.

4.6. Exporting the detected code smells into Excel files
The "org.eclipse.titanium.applications.ExportAllCodeSmells" entry point can be used to invoke the
on-the-fly analyser on all projects in the workspace and extract the detected code smells into Excel
files.

To support unattended nightly tests, this entry point analyses a project found in the workspace.
This is very useful in large systems, where we might wish to check all projects in the workspace at
once.

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.ExportAllCodeSmells ForProject
c:\ekrisza\temporal\TitanSim\TitanSim_20130530

This entry point takes 1 or 2 parameters:

1. The first parameter is mandatory and is the prefix of the output path.

2. The second parameter is optional and is date to be used in the generated file’s name (the
current date if not provided).

This prefix will be appended with the name of the project, the provided or current date and the
".xls" extension.

4.6.1. Exporting the detected code smells of a single project into an Excel
file

The "org.eclipse.titanium.applications.ExportAllCodeSmellsForProject" entry point can be used to
invoke the on-the-fly analyser on a single project in the workspace and extract the detected code
smells into a single excel file.

To support un-attended nightly tests, this entry point analyses the provided projects found in the
workspace. This is very useful in large systems, where the source code is hierarchically separated
into several projects, as the code smells of the project and all projects it references will be displayed
in a single xml instead of one xml for each project.

28

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.ExportAllCodeSmells
c:\ekrisza\temporal\TitanSim\TitanSim_20130530 Hello_World

This entry point takes 2 or 3 parameters:

1. The first parameter is mandatory and is the prefix of the output path.

2. The second parameters is mandatory and is the name of the project to process.

The third parameter is optional, and it is the date to be used in the generated file’s name (the
current date if not provided).

This prefix will be appended with the name of the project, the provided or current date and the
".xls" extension.

4.7. Exporting the detected code smells into CSV files
The "org.eclipse.titanium.applications.ExportAllCodeSmellsToCSV" entry point can be used to invoke
the on-the-fly analyser on all projects in the workspace and extract the detected code smells into
CSV files.

To support unattended nightly tests this entry point analyses all projects found in the workspace.
This is very useful in large systems, where the source code is hierarchically separated into several
projects.

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.ExportAllCodeSmellsToCSV
c:\ekrisza\temporal\TitanSim\TitanSim_20130530

This entry point takes exactly one parameter: the prefix of the output path. This prefix will be
appended with the name of the project and either "summary" or the name of a code smell as
ending. The "summary" file contains a summary of the code smells, listing all smells and their
occurrence. While the code smell unique files only contain reports specific to that code smell. In
these files the reported message, the path of the file where it was found, and the line number in
which it was found is reported for all occurrences.

The "times" file contains the estimate repair times calculated for the whole project grouped by
types.

4.8. Exporting the measured Metrics data into Excel
files
The "org.eclipse.titanium.applications. ExportAllMetrics" entry point can be used to invoke the on-
the-fly analyser on all projects in the workspace and extract the measured values of Metrics into
excel files.

29

To support unattended nightly tests, this entry point analyses all projects found in the workspace.
This is very useful in large systems, where the source code is hierarchically separated into several
projects.

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.ExportAllMetrics
c:\ekrisza\temporal\TitanSim\TitanSim_20130530

This entry point takes exactly one parameter: the prefix of the output path. This prefix will be
appended with the name of the project and the ".xls" extension.

4.9. Exporting the module dependency graph
There are two ways of exporting the module dependency graph. The two ways only differ in the
used file format. The first one is to create a Pajek .net file. The second option is exporting it to a .dot
file, which is the original file format of GraphViz and it is easily readable by humans.

The "org.eclipse.titanium.applications.SaveModuleNet" entry point can be used to invoke the on-the-
fly analyser on all projects in the workspace and extract their module dependency graphs into the
Pajek ".net" format.

And the “org.eclipse.titanium.applications.SaveModuleDot” entry point can be used to export to a
.dot file.

The entry points can be invoked as:

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.SaveGraph
c:\ekrisza\temporal\TitanSim\NightlyGraphs_

These entry points take one obligatory parameter: the prefix of the output path.This prefix will be
appended with the name of the project and the ".net"/”.dot” ending, creating a separate output file
for every project. This parameter must be the first parameter of the application

The second optional parameter is the clustering parameter. A clusterer algorithm maybe set to
export cluster graph and not the original module graph. This parameter can be provided by a
"–c<algorithm_name>" parameter, for example:

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.SaveGraph
c:\ekrisza\temporal\TitanSim\NightlyGraphs_ -cmodulelocation

The possible values of <algoritm_name> are:

1. ModuleLocation

2. FolderName

30

3. LinkedLocation

4. RegularExpression

5. ModuleName

4.10. Exporting the component dependency graph
Similarly to the module graph the component graph also can be exported into two file formats, thus
two applications maybe called depending on the desired file format.

The "org.eclipse.titanium.applications.SaveComponentNet" entry point can be used to invoke the on-
the-fly analyser on all projects in the workspace and extract their component dependency graphs
into the Pajek ".net" format

The “org.eclipse.titanium.applications.SaveComponenDot” entry point should be called to export the
component graph in ".dot" format

The entry points can be invoked as:

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.SaveComponentGraph
c:\ekrisza\temporal\TitanSim\NightlyGraphs_

These entry points take exactly one parameter: the prefix of the output path. This prefix will be
appended with the name of the project and the ".net"/".dot" ending, creating a separate output file
for every project.

4.11. Exporting data for the Titanium SonarQube
plugin
The code quality data can be exported and displayed on a SonarQube server. For more information
see Section 12. This entry point can be used by automated tests or continuous integration servers as
well to export the data in headless mode.

The "org.eclipse.titanium.applications.ExportDataForSonar" entry point can be used to invoke the
on-the-fly analyser on all projects in the workspace and extract the result into a format which can
be processed by the Titanium SonarQube plugin. This application can also be used to export the
data of specific projects by providing the project names as command line parameter.

The exported files will be available in the ".sonar_titanium" directory.

The following command exports the detected code smells of all the projects in the workspace.

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.ExportDataForSonar

The following command exports the data of the project "MyProject1" and "MyProject2".

31

eclipse.exe -noSplash -data c:\Users\ekrisza\runtime_headless -application
org.eclipse.titanium.applications.ExportDataForSonar MyProject1,MyProject2

32

Chapter 5. Actions
The Titanium plug-in extends some of the context-sensitive menus of Eclipse where appropriate,
providing a convenient way to use the available tools.

5.1. Editor actions

Figure 17. Editor actions context menu

While editing a TTCN3 source file, you can open the context menu by right clicking in the editor.
Under the Titanium menu point, you will find the available actions on this file.

• Organize imports: Intelligently adds and removes module importation statements, according
the currently referenced definitions in the file. For details cf. Chapter Organize imports.

• Show module in Module hierarchy: Displays the module hierarchy, and reveals in it the
location of the current module.

• List what is running on this component: When the cursor is over a component type definition,
this feature will collect all function/altstep/testcase definition that run on that component and
list the in the TITAN Console view.

5.2. Project actions

33

Figure 18. Project actions context menu

To access the Titanium project actions, right click to a Titan project name in the Package Explorer,
and select the Titanium menu.

• Organize imports: Organize imports of all TTCN3 source files in the project. See here.

• View top risk metrics: Open the Top risk metrics view showing the selected project. See here.

• View metrics: Open the Metrics view showing the selected project. See here.

• Draw component structure: Visualize the components of the project. See here.

• Draw module structure: Visualize the module dependencies of the project. here.

5.3. File actions
To access the Titanium file actions, right click on a file inside a Titan project, in the Package
Explorer, and select the Titanium menu.

• Organize imports: Organize imports of all TTCN3 source files in the project. See here.

• Show module in Module hierarchy: Displays the module hierarchy, and reveals in it the
location of the current module.

34

Chapter 6. Configuring the Problems view
The amount of problems reported in the Problems view for some projects can be quite
overwhelming for users.

This can be changed, as in Eclipse it is possible to configure the contents of the Problems view to
filter the list of seen issues.

Figure 19. Problems view filtered to show only unused local and global definitions

6.1. Configuring by hand
The first way to configure the contents of the Problems view is to use its View menu. By right
clicking on the View menu (the triangle in the right hand side of the toolbar) the menu of the
Problems view pops up. Here it is possible to check and set which filters are active, set the
grouping and sorting of problems, configure the contents and columns of the view.

As seen on Figure 20 the Show menu displays which already configured settings are active at any
time. The configurations active are selected in this menu. If some of them have to be filtered out, or
a previously inactive filter has to be activated, it can be done with a single click here.

Figure 20. Problems view active filters

By selecting the Configure Contents… menu entry, the configuration window appears. In this
window it is possible to create/remove/change configuration to best fit any user need. For a more
detailed description please refer to the help system of eclipse, using the Workbench User Guide /
Concepts / Views / Problems view path.

35

6.2. Importing a configuration predefined for
Titanium
To help in getting started with Titanium, we have created a beginning set of configurations. These
settings can be imported from a single file, and fine-tuned to best fit any use case.

The file containing the setting can be downloaded from here. To import it, inside eclipse select File /
Import … . In the window that pops up select General / Preferences (as shown on Figure 21). Till
this point this is just like importing a new project, but instead now Eclipse is asked to import some
of its setting saved previously.

Figure 21. The preference importation wizard selected

In the window that pops up select the file that was just downloaded. As this file only contains
settings for the Problems view both selecting the configuration, and selecting to Import all will
lead to the loading of the contents. To finish the procedure the Finish button has to be selected, and
after eclipse loads the settings, the configurations will automatically appear in the Problems view.

36

https://sharepoint.ericsson.com/sites/DUCI_SW_Technology/Titanium/Documents/problems_view_preferences.epf

Figure 22. Import preferences selector

37

Chapter 7. Organize imports
Organizing imports means intelligently adding and removing module importation statements,
according to the currently referenced definitions in the source file.

Usage:

• To organize imports of the currently edited file, press Ctrl+Shift+O or open the context menu by
a right click and select Titanium / Organize imports.

• To organize imports of all TTCN3 source file in a project, open the context menu by a right click
on the project name in the project browser view, and select Titanium / Organize imports.

The changes in the import list will be made respectively to the preference settings described here.
When Titanium cannot decide which module to import (for example because a module uses a
definition whose identifier is not unique), the user is faced with a dialog, where she can select the
proper module to import.

Figure 23. Module importation disambiguation

NOTE
The "Organize imports" feature is working only on TTCN-3 files. ASN.1 and pre-
processable TTCN-3 files are not supported, and so will be skipped by the algorithm.

38

Chapter 8. Metrics View

Figure 24. Metrics view

The Metrics View provides a convenient overview of the 'health' of a project from many different
viewpoints.

Usage:

1. Open the Window / Show perspective / Metrics view.

2. Choose a project to analyse from the combo box (on the top of the view).

NOTE Only those projects can be selected that are visible in the project explorer.

3. Press the Refresh button (near the project selector).

This will create a table with five columns, where the user can explore the results of the metrics on
the chosen project.

The first column contains a tree with the following levels:

• On the top the different kind of metrics are listed. No values are shown here.

• Opening a node, the metrics of that kind are listed. The values shown are regarded the whole
project.

• Excluding project metrics, node can be opened further, listing the modules of the project. The
shown values are regarded the whole module.

• Function, testcase and altstep metrics can be opened again, listing the exact functions, test
cases, altsteps that reside in that module. At this level, no statistics are shown, but only the exact

39

value of the measurement.

Figure 25. Metrics view with selection

On Figure 25 the selected row shows information about the Number of functions metric (which is
in fact a module metric). It can be seen that:

• the project contains a total of 834 functions;

• the module with the most functions containing 314 of them;

• modules of the project contain 12.26 functions on average;

• with 41.09 standard deviation.

As the node is opened, under this node we can examine the modules of the project, ordered by the
number of functions they contain, and see that module AtsIpv6Core… contains 314 functions,
module AtsIpv6NeighborDiscovery… contains 113 functions, etc.

8.1. Risk highlighting
The Metrics View provides the exact values of the metrics, but these values might be hard to
interpret for users. That is why the Metrics View uses highlighting to emphasize some suspicious
points of the project.

A row can be highlighted with red, which signs serious weakness in the project, or with yellow,
which might be only a minor flaw. Highlight behaviour can be set in the Window / Preferences /
Titanium Preferences / Metrics / Limits preference page.

Moreover, to let the users conveniently and quickly overview the riskiest points of the project,
nodes of the tree in the Metrics View are ordered descending by the risk of the entities: the earlier a
node is in the list the higher the chance of some error is there.

8.2. Jumping to code
Naturally when one finds for example a test case with an extremely high cyclomatic complexity
value, he may want to have a look at that testcase definition. While it is possible to search the
location of that testcase by hand, it is much more convenient to simply double click on that row.

40

This will load an editor for the specific module, with the cursor positioned to the beginning of
testcase definition.

41

Chapter 9. Top Riskiest Modules View

Figure 26. Top Riskiest Modules view

The Top Riskiest Modules View provides a view to easily decide, which modules are considered the
'riskiest' based on the results of some metrics.

9.1. Usage
Usage of the Top Riskiest Modules View is somewhat similar to the usage of the Metrics View:

1. Open the Window / Show perspective / Top riskiest modules view

2. Select the project to analyse from the combo box at the top of the view (only open projects are
shown)

3. Press the Refresh button right near the project selector

4. A dialog will pop up, where the user can check the metrics she wants to use. When ready, click
the OK button on the bottom

This will finally create a table in the View.

Rows in the table show modules, and the results measured by the different metrics on that module.

9.2. Colouring
Cells of the table are coloured in the same manner as rows in the Metrics View. If the metric
measures high risk for the module it is displayed with red background. When the risk is measured
to be low it is yellow. If the metric does not considers a module suspicious, it will be displayed in
green. The limits of this classification can be set in the Window / Preferences / Titanium
Preferences / Metrics / Limits preference page.

NOTE
Ordering of the modules happens descending by the cumulative risk according to
the chosen metrics.

9.3. Jumping to code
Just as in the Metrics View, double clicking on a module name will open an editor on the selected

42

module.

43

Chapter 10. The module dependency graph

10.1. Introduction to the dependency graph
The dependency graph was introduced to help architects see the actual state and architecture of
their TTCN-3/ASN projects.

To see how it displays the architecture let’s examine a small project with 3 TTCN3 source file called
A.ttcn, B.ttcn and C.ttcn. The content of these files include:

A.ttcn

module A {
 import from B all;
 import from C all;
 ...
}

B.ttcn

module B {
 import from C all;
 ...
}

Module A imports B and C. The module dependency graph should show 3 nodes (one for each
module), a directed edge pointing from A to B, and one also from A to C. Module B import C, so the
dependency graph should also have and edge pointing from B to C.

In real life projects this might be a much more complicated structure, which is most of the time
impossible to hold in anybody’s memory. Not to mention the complication when there is more than
one man working on a project and not everyone follows the predefined architectural rules
perfectly. In such cases it becomes impossible for anyone to know the structure of the project with
such a tool.

The aim of this feature is to visualize for system architects the actual architecture of their project.
So that they can become familiar with it, can experiment on it, and catch possible architectural
errors that appeared in the system.

NOTE
This tool is meant to be used by people who have a large scale overview of the
project, and at least some low level graph theory background. For this reason to
maximize its usefulness it might be needed to have such experience.

10.2. Usage of the module graph

44

10.2.1. Drawing a graph

The architecture of a project can be opened by right clicking on a TTCN-3 project managed by the
TITAN Designer, and selecting Titanium/Draw module structure (see below).

Figure 27. Making module graph

Depending on the size of the project and whether it was already analysed by the On-the-fly analyser
of the Designer plug-in or not this might take up to a few minutes. The reporting of progress is done
in the Eclipse Progress View.

After the successful draw of module graph you should see something similar shown on Figure 28.

NOTE
This image has two main parts, on the right hand side you can see the so called
satellite view (this is an Eclipse view that automatically opens upon every graph
drawing). And on the left hand side you can see an editor (let’s call it graph area).

Clicking on a specific place in the satellite view, the graph area will jump to show that place, and
the area will have a white background on the satellite view.

45

Figure 28. The parts of the graph window

10.2.2. Interactive events of the graph

After successfully making a module graph several things can be done on the graph area:

• Clicking the left button and dragging the mouse:

◦ If clicked on a graph node, the node can be dragged to a new location.

◦ When the click happened outside the nodes a cyan square appears, marking all nodes
selected inside the square. This way all the marked nodes can be moved as a group later.

• Scrolling with the mouse wheel:

◦ This causes the graph to zoom in or out depending on the scrolls direction.

• Right clicking on a node:

◦ A menu should appear, here you can choose an action to perform, there are five actions:
(see Figure 29)

▪ Select node: Here the node is only selected, so it will be marked by different colour, and
the incident edges will be red, while all other edges will be grey.

▪ Search parallel paths: This menu item starts a search for parallel paths whose source is
the clicked node. This action may take longer, however it is much faster than the search

46

for all parallel paths on the graph which may be used from Tools menu.

▪ Show Dependent nodes: This menu item searches and selects all nodes that could be
removed if this node is removed (does not have other transitive dependencies)

▪ Go to definition: By clicking on this entry the source file of the selected module will be
opened. The place of definition should be highlighted inside the file.

▪ Show Info window: Clicking on this item pops up a small window which contains the
metrics information calculated for this node (module), see Figure 30.

• Clicking the right mouse button and dragging it inside the window while the Ctrl button is
pressed:

◦ The view inside the graph will move according to the dragging.

• +/- key presses:

◦ Zoom in and out of the graph.

Figure 29. The popup menu after right click on a graph node

10.2.3. Module information window

The metric popup window can be opened by right clicking on a selected node.

Figure 30. The info window and a selected node

47

The edges belonging to c are drawn red, and all the other edges are drawn very soft, grey. This
feature visualizes the neighbours of a given node. In the metrics window the Number of functions
metric is selected in the metrics menu (see Figure 30). The colour of the row in this view is the same
as the selected node’s colour, which represents how bad it was according to the selected metric.

10.2.4. Menu functions

This section lists the functionalities that are reachable from the graph window’s menu. There are
six main menus: File, Layout, Find, Tools, Metrics and Clustering.

File menu

There are two entries in the file menu:

• Save: This will save the graph into a specific format called Pajek .net. For further information
please check Pajek’s documentation. This format stores only the node names, and the
connections, but nothing else (no static place, node shape, colour, etc.). This function also can be
reached by Ctrl+S hotkey combination while the graph editor is active.

• Export to image file: Clicking on this item first pops up a window where you can select from
three options (see Figure 31):

◦ Whole graph: Export all the nodes into a big image file. On big graphs this action may fail,
because the image file can be too big.

◦ Only the seen part: You export the graph editor window to an image file (only the nodes
what you see there).

◦ The Satellite view: In this case you only export the satellite view in its seen size to an image
file.

This function also can be reached by Ctrl+E hotkey combination while the graph editor is active.

Figure 31. The image export window with shown and hidden selection list

Layout menu

This menu allows you to change the layout of the graph. Graph layout is a method for organizing
the nodes on the screen. There are several aspects, and therefore several layouts. This guide should
be used to choose the best for the given job.

The currently available layouts:

• Self Organizing ISOM: This layout groups the most frequently visited modules close to each
other, and collects less visited nodes separately. These way outstanding branches become

48

http://netwiki.amath.unc.edu/DataFormats/PajekNetAndPajFormats

visible. Isolated components (a group of nodes that does not have any edge that goes to a node
that is outside the group) are displayed as separated graphs.

Further details: Meyer B. (1998) Self-Organizing Graphs — A Neural Network Perspective of
Graph Layout. In: Whitesides S.H. (eds) Graph Drawing. GD 1998. Lecture Notes in Computer
Science, vol 1547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37623-2_19

• Fruchterman-Reingold algorithm: This algorithm is based on a method of modern physics. It
collects the most frequently visited modules to the centre of a circle like shape. The less visited
modules will be on the edge of this circle.

The exact algorithm can be seen here: Fruchterman, T.M.J. and Reingold, E.M. (1991), Graph
drawing by force‐directed placement. Software: Practice and Experience, 21: 1129-1164.
https://doi.org/10.1002/spe.4380211102

• Kamada-Kawai algorithm: This algorithm is similar to the self-organizing layout, but it is
based on the reduction of number of edge crossings. Thus it may provide better view.

For further details see:

◦ Tomihisa Kamada and Satoru Kawai: An algorithm for drawing general indirect graphs.
Information Processing Letters 31(1):7-15, 1989

◦ Tomihisa Kamada: On visualization of abstract objects and relations. Ph.D. dissertation,
Dept. of Information Science, Univ. of Tokyo, Dec. 1988.

• Spring force directed: This algorithm is based on the force of springs. The edges should be
imagined as strong springs that would like to get the nodes closer. But nodes have a toss power,
so they won’t necessarily get very close. (This toss power is bigger if more nodes are close.) This
layout is not really good for small graphs, as nodes may cover each other, but it can be useful
for big graphs.

• Logical ring: This layout will organize nodes to a logical ring (circle). The edges will point to
different other points of the circle (other nodes). It is not really useful for big graphs, but
sometimes it may be good for small graphs.

• Directed layouts: These layouts try to show you some kind of structure inside the graph. They
usually show you how distinct logical levels separated on the graph.

◦ General Directed Graph: In this case you will see a few root nodes on the top of the screen,
these nodes only have edges that point out of them, but there is no edge that points into the
node. Below this you will see the children of these nodes (nodes that have an edge pointing
to it from one of the root nodes), and so on (later you will see the children of children
(grandchildren), and great grandchildren, etc.)

◦ Reverse Directed Graph: In this layout the roots will be such nodes that only have edges
pointing inside, and not edges pointing out. In this case you will see a structure similar to
the above defined, but the direction of the edges will be reverse. So you can see the parents
of the roots on the second level, and the grandparents on the third level, and so on.

• Metrics layouts: These layouts are similar to directed layouts. Just the calculation of the depth
of a node is different. We could say they are also directed layouts, but the depth is calculated
according to the measured metric value. You should choose one given metric in the submenu.

49

https://doi.org/10.1007/3-540-37623-2_19
https://doi.org/10.1002/spe.4380211102

After this we determine the maximal and minimal value of this metric measured for the whole
project module by module. Then this interval (min-max) is divided into equal parts. And each
node gets a depth according to its subinterval. These layouts show well the possible structural
problems, and they can show problems from a given aspect.

Find menu

This menu currently only has one entry, node by name. Clicking on this entry should pop up a
small find window, where you may enter a text (see Figure 32). This text will be normally
considered only as the beginning part of the node name, and the finder won’t mind whether it is
upper or lower case. You can modify this behaviour by selecting exact match or case sensitive
check boxes. If exact match is selected then only such nodes will be found that have exactly the
written name (this still doesn’t mind about upper/lower case). These options maybe selected also
together, in this case lower/upper case will also be handled separately.

Figure 32. The find window

On the dialog you can see two buttons, Find button will show you a table with the results (see
Figure 33), or a message if there is no result. By clicking on an item of the list the graph window will
jump there, and colour the selected node to be light blue, while all other nodes will be coloured
grey. To totally understand this you can see a mixed figure on Figure 33, you can see the satellite
view, the find window and the shown part of graph window together. You can see on the satellite
view that your graph has two more nodes that are out of your screen. But as you clicked on A_Ext
node the shown part was placed there (in this case the graph window’s center is slide to the node).
On the Find window’s result set you can see that there is one more node that matched your search,
this is called A_Base. Would you click there the graph window would jump there, and would colour
A_Ext grey, and A_Base blue.

By clicking Clear result you may change back to the original node colours, and make the result list
to be empty (in this case Find window returns to its original size, and hides the part shown below
the horizontal separator line).

NOTE
Running two searches in series will show the union of the two found sets, unless
you click on clear result. Closing the dialog also causes the nodes to change to their
former colour.

50

Figure 33. Searching for nodes that names begin with a, and the result list, and A_Ext result on the screen

Tools menu

In this menu you can find three options:

• Show circles: Clicking on this item starts a search for circles on the graph. When the searching
is finished all the circle edges should be coloured red (here the colour of the text is same as the
edge colour on the graph).

NOTE
This algorithm will not find all circles: In some cases when a circle shares
several nodes with another circle, one of them might not be detected.

• Show parallel paths: This is very similar to the former action. The only difference is in the
direction of the edges. Clicking on this item starts a parallel path search. The result should be
denoted by the same way as on circle searching.

• Clear results: Clicking on this item sets back all the edge colours to the original state. Generally
it should be used after searching. This action is never performed automatically.

Metrics menu

In this menu the metrics set on the preference page (see Section 3) can be selected. This will cause
the graph nodes to have specific colours according to their metric values set in this menu.

The meaning of colours:

51

Colour Meaning

Green Good module, probably it is not risky according
to the chosen metric

Yellow Medium module, it may be bad according to the
metric

Red Suspicious module, this is probably bad, but still
not surly

Purple These modules are not measured, as their source
code cannot be found in the project

Grey The chosen metric is not calculable on this
module

NOTE
In this table all the cells are coloured according to the exact colours inside the plug-
in.

Finally the menu contains an entry Recalculate metrics. This entry drops away all the used
metrics information and calculates each again. It also runs a refresh on the semantical analysis.
This entry should be used if you modified something in a module and you would like to see the
refreshed metric values (metric values are used also for metric layouts).

Clustering menu

Figure 34. The clustering menu with grouping entries

This menu provides the clustering capabilities for module graphs. It can be divided into two further
submenus:

• Grouping clusterer: Using these entries the identified clusters are drawn into knots on the
screen. All nodes that are close each other are in the same cluster (see Figure 35).

• Graph generating cluster: Using these clusterers each node will represent one named cluster.
The edges will represent whether there is connection between the two clusters (maximally can
be two edges between two clusters, one pointing out to the other cluster, and one reverse).

To see the difference between the two behaviours compare Figure 35 and Figure 36.

52

Figure 35. A clustering of module graph made by a grouping clusterer

Figure 36. A clustering of module graph made by a graph generating clusterer

1. Clustering graph’s behavior

As we have already seen in case of using a graph generating clusterer a totally new graph
(cluster graph) will be shown. But it results some special behavior in graph menus. First of all,
as it does not make sense to speak about the metrics of a cluster (graph node), the info window
and the metrics menu will be deactivated. On the second hand all the cluster making menu
entries will be deactivated, as currently clustering a cluster graph is not supported.

53

All the now mentioned constraints will be changed back, and the original module graph will be
seen in case you choose the Leave cluster graph entry (see Figure 37).

Figure 37. The menu system after changing to cluster graph

2. The clustering algorithms

In the clustering menu the following clustering methods can be chosen:

◦ By folder name: The modules will be grouped together by their physical location in the
eclipse project.

◦ By linked file location: The modules will be grouped by their absolute path on the file
system.

◦ By module location: Modules contained in eclipse folders will be grouped by their relative
path, while modules contained in linked resources will be grouped by their full path.

◦ Using regular expressions: The modules will be grouped by matching the module name to
the regular expressions given on the Graph/Clusters/Using regular expressions preference
page. See here.

◦ Automatically: First the other methods will be used to create an initial clustering. Then they
will be improved and the best one displayed. The clustering achieved tries to better reflect
the structure of the project. For details on how the algorithm works, see [6].

◦ By module names: This algorithm results in a hierarchical grouping. The module names
will get to separate clusters according their main part (for example prefix name), then get to
more accurate subgroups according their secondary name, and so on. In case of using this
algorithm in grouping mode you only get separate groups according to the prefixes of the
modules. If you use this algorithm with cluster graph you will see the whole hierarchy from
the level of the main module names down to the actual module names. The subgroup
separator here is determined according to the most usual symbols (“_” sign, Upper case, etc.).

NOTE

In case of using this algorithm with cluster graph you will automatically change to
General Directed Graph layout. This selection naturally can be change through the
Layout menu. After changing back to the original graph you will again get an ISOM
layout.

54

Chapter 11. The component dependency
graph

11.1. Functionality
Similarly to the module graph the structure of component inheritance can also be drawn for a
given project. This functionality has many things in common with the module graph, but also there
are few minor differences. In this graph nodes represent components and an edge A→B represents
that B is inherited from A. The component graph can be drawn similarly as the module graph, for
an example please look at Figure 28. Component graph drawing is exactly below the module graph
drawing.

NOTE In many cases this graph can be empty, principally in smaller projects.

11.2. Interactive actions

11.2.1. General actions

Scrolling and +/- zooming works the same way as on module graph. Also satellite view works
exactly the same way.

11.2.2. Graph node actions

Component graph works similarly as the module graph. On the component graph there are no
colours, all the nodes are coloured light green, and the selected node is coloured light blue. A node
may be selected by the same way as on the module graph, also a group of nodes.

There are no metrics defined on components, so in this case there won’t be a metrics menu (see
Figure 39) and also metrics info pop-up window is not active on this graph. Selecting a node by
right click only causes the edges and the node to be selected.

11.2.3. Menu actions

Figure 38. The component graph’s menu bar, and the layout menu

File menu

File menu is the exact copy of the file menu seen on module graph.

55

Layout menu

On a component graph only ISOM and DAG layouts maybe chosen, therefore the layout menu has
only these two entries.

Find menu

Also find menu works the same way as on the module graph.

Figure 39. The component graph

56

Chapter 12. Titanium Sonar plugin
The Titanium Sonar plugin makes it possible to display the exported code quality information on
the SonarQube server. Currently the detected code smells can be processed. The following sections
describe how to install the server and how to transfer the data from the Titanium Eclipse plug-in to
the SonarQube.

12.1. Setting up the SonarQube server
The following description can be used to set up the SonarQube server on a development machine,
for a single user. If you need to install it on a server for multiple users please read the
documentation at https://docs.sonarqube.org/latest/ .

1. Download the proper zip file (sonarqube-<version>.zip) from http://www.sonarqube.org/
downloads/ . Versions 4.1+ are supported.

2. Unzip the package

3. Install the Titanium Sonar plugin: copy the jar file to the <sonar_dir>/extensions/plugins
directory

4. Start the proper executable according to your platform in the bin directory.

5. The sonar server can be accessed on the http://localhost:9000 address. The default user: admin.
Default password: admin

6. Download the SonarQube runner from http://www.sonarqube.org/downloads/ . This application
will be responsible for feeding the exported data into the server.

7. It is recommended to include the <sonar-runner_dir>/bin directory in the system path.

12.2. Exporting the data from Eclipse
The code quality data needs to be exported for the SonarQube analyser. This can be done on the
GUI or in headless mode.

12.2.1. On the workbench

The functionality can be accessed in the context menu of the project explorer on the path:
Titanium/Export data for SonarQube. One or more projects should be selected.

57

https://docs.sonarqube.org/latest/
http://www.sonarqube.org/downloads/
http://www.sonarqube.org/downloads/
http://localhost:9000
http://www.sonarqube.org/downloads/

Figure 40. The component graph

58

12.2.2. In headless mode

See here

12.3. Load the data on the server
The sonar-runner must be executed in the root directory of the project.

12.4. Browse the result
By default the SoarQube web interface can be accessed on the http://localhost:9000 address. For
more information about this interface see https://docs.sonarqube.org/latest/ .

59

http://localhost:9000
https://docs.sonarqube.org/latest/

Chapter 13. References
• [1] Installation Guide for TITAN Designer and TITAN Executor for the Eclipse IDE

• [2] Programmers Technical Reference for TITAN TTCN-3 Test Executor

• [3] Methods for Testing and Specification (MTS); The Testing and Test Control Notation version
3. Part 1: Core Language European Telecommunications Standards Institute ES 201 873-1
Version 4.1.1, July 2009

• [4] Methods for Testing and Specification (MTS); The Testing and Test Control Notation version
3. Part 7: Using ASN.1 with TTCN–3 European Telecommunications Standards Institute. ES 201
873-7 Version 4.1.1, July 2009

• [5] Test software quality issues and connections to international standards Attila Kovács, Kristóf
Szabados Acta Univ. Sapientiae, Informatica, 5, 1 (2013)

• [6] Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y., & Gansner, E. R. (1998, June). Using
automatic clustering to produce high-level system organizations of source code. In Program
Comprehension, 1998. IWPC'98. Proceedings., 6th International Workshop on (pp. 45-52). IEEE

60

https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/blob/master/org.eclipse.titan.help/docs/Eclipse_installationguide/Eclipse_installationguide.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/referenceguide/ReferenceGuide.adoc
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.01.01_60/es_20187301v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.01.01_60/es_20187301v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.01.01_60/es_20187301v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.01.01_60/es_20187307v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.01.01_60/es_20187307v040101p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.01.01_60/es_20187307v040101p.pdf
https://www.researchgate.net/publication/263765466_Test_software_quality_issues_and_connections_to_international_standards
https://www.researchgate.net/publication/263765466_Test_software_quality_issues_and_connections_to_international_standards
https://www.cs.drexel.edu/~bmitchel/research/iwpc98.pdf
https://www.cs.drexel.edu/~bmitchel/research/iwpc98.pdf
https://www.cs.drexel.edu/~bmitchel/research/iwpc98.pdf

Chapter 14. Glossary
ASN.1

Abstract Syntax Notation One

GCC

GNU Compiler Collection

GUI

Graphical User Interface

HC

Host Controller

IDE

Integrated Development Environment

IP

Internet Protocol

MC

Main Controller

MTC

Main Test Component

PTC

Parallel Test Component

SUT

System Under Test

TCP

Transmission Control Protocol

TTCN–3

Tree and Tabular Combined Notation version 3 (formerly)Testing and Test Control Notation
(new resolution)

TTCNPP

TTCN Preprocessable (file)

TTCNIN

TTCN Includable (file)

URL

Universal Resource Locator

61

	Titanium Description
	Table of Contents
	Chapter 1. Introduction
	1.1. How to read this document
	1.2. Overview of Titanium
	1.3. General workflow
	1.4. The TITAN implementation of TTCN–3
	1.5. Intended audience
	1.6. Presumed knowledge
	1.7. Typographical conventions
	1.8. Installation
	1.9. How to report an error for the tool

	Chapter 2. Getting started
	2.1. The perspective
	2.2. Setting workbench preferences
	2.3. TITAN preferences

	Chapter 3. Titanium preferences
	3.1. Code smell preferences
	3.1.1. Potential structural problems
	3.1.2. Code style problems
	3.1.3. Potential performance problems
	3.1.4. Potential Programming problems
	3.1.5. Unnecessary code
	3.1.6. Repair times of code smells

	3.2. Organize import preferences
	3.3. Metrics preferences
	3.4. Metric limits preferences
	3.4.1. Project metrics
	3.4.2. Module metrics
	3.4.3. Function metrics
	3.4.4. Testcase metrics
	3.4.5. Altstep metrics

	3.5. Metrics view preferences
	3.6. Project risk factor preference page
	3.7. Graph preferences
	3.7.1. General graph preferences
	3.7.2. Metrics preferences of module graph
	3.7.3. Cluster preferences of module graph

	Chapter 4. Headless mode
	4.1. Important settings
	4.2. The general structure of invocation
	4.2.1. Pitfalls

	4.3. Clearing all projects from the workspace
	4.4. Importing projects from .prj
	4.5. Importing projects from the .tpd
	4.6. Exporting the detected code smells into Excel files
	4.6.1. Exporting the detected code smells of a single project into an Excel file

	4.7. Exporting the detected code smells into CSV files
	4.8. Exporting the measured Metrics data into Excel files
	4.9. Exporting the module dependency graph
	4.10. Exporting the component dependency graph
	4.11. Exporting data for the Titanium SonarQube plugin

	Chapter 5. Actions
	5.1. Editor actions
	5.2. Project actions
	5.3. File actions

	Chapter 6. Configuring the Problems view
	6.1. Configuring by hand
	6.2. Importing a configuration predefined for Titanium

	Chapter 7. Organize imports
	Chapter 8. Metrics View
	8.1. Risk highlighting
	8.2. Jumping to code

	Chapter 9. Top Riskiest Modules View
	9.1. Usage
	9.2. Colouring
	9.3. Jumping to code

	Chapter 10. The module dependency graph
	10.1. Introduction to the dependency graph
	10.2. Usage of the module graph
	10.2.1. Drawing a graph
	10.2.2. Interactive events of the graph
	10.2.3. Module information window
	10.2.4. Menu functions

	Chapter 11. The component dependency graph
	11.1. Functionality
	11.2. Interactive actions
	11.2.1. General actions
	11.2.2. Graph node actions
	11.2.3. Menu actions

	Chapter 12. Titanium Sonar plugin
	12.1. Setting up the SonarQube server
	12.2. Exporting the data from Eclipse
	12.2.1. On the workbench
	12.2.2. In headless mode

	12.3. Load the data on the server
	12.4. Browse the result

	Chapter 13. References
	Chapter 14. Glossary

